Distributed System Abstractions for Multicores Systems

Frank Mueller
North Carolina State University

mueller@csc.

ABSTRACT

Current trends in microprocessors are to steadily incrésgeseum-
ber of cores. While multicores offer tremendous opportasito
meet processing demand, they come at the expense of linciadd s
ability due to on-chip (interconnect) and off-chip (memjorg-
source contention. As the core count increases, curretegrayend
programming abstractions, such as pure task-level pasaflend
single-image operating systems, become an obstacle tatrean
aid in harnessing multicore power.

This work promotes a distributed system design, insteachef t
traditional shared memory view on a chip. It utilize meslsdzh
network-on-chip (NoC) communication. It provides a newtedrs
tion layer of micro-kernels on few cores and pico-kernelstlos
vast majority of cores on a chip. This novel layer mitigateghh
level node parallelism and low-level shared memory. It hasio-
tential to be transparent to programmers but can also bécikpl
addressed for bare-metal performance.

1. INTRODUCTION

The future of computing is rapidly changing as multicoreges
sors are becoming ubiquitous. While multicores offer treduais
opportunities to meet processing demand, they come at ffensg
of limited scalability due to on-chip (interconnect) and-chip
(memory) resource contention.

Contemporary shared memory techniques have been showth to fa
short in scaling, particularly at the system level where raylsi
system image (SSI) remains the traditional abstractionl w&S

a good match for bus-based multiprocessors in the past. How-
ever, bus-based designs do not scale well (even beyond four p
cessors) and have been replaced by mesh interconnectsHg-g.
pertransport, Quick Path Interconnect) and, for high canents,
tile-based architectures with 2D meshed network-on-chipQ)
interconnects [2, 3, 8, 7, 1].

Mesh-based systems with MESI-style (Modified/Exclusivet®d/In-
valid) coherence protocols enhanced by coherence filt¢mmé§
limit scalability in in the number of cores. For example, thalti-
kernel (aka. Barrelfish) follows a distributed kernel pagadthat
employs messages in an off-chip mesh interconnect of Hygrest
port links [4]. It shows that messaging can outperform stharem-
ory for configurations of just eight processors.

2. OPEN QUESTIONS

The hypothesis of this position paper ©®n the path to exascale,
research is needed to develop novel system and programaabstr
tions at the runtime and operating system layers that replie
shared-memory SSI legacy with an asynchronous messagd;bas
decentralized and distributed system design, yet at smatem
size suitable for per-core deploymewi.pico kernel is envisioned
that handles task dispatching and on-chip communicatioaaah
core. These per-core pico kernels would be controlled byranic
kernels that govern the scheduling of tasks and coordirigteeh
level operating system abstractions (e.g., off-chip devdccess,

ncsu.edu

systems for the future. We promote a set of novel system and
program abstractions at the runtime and operating systgerda
that replaces the shared-memory SSI legacy with an asymachso
message-based, decentralized and distributed systegndgst at
small system size suitable per-core deployment.

In the following, a high level description of the system d@sob-
jectives and their relation to open questions in multicasearch

is provided.

Ensure predictive execution that maximizes the use of allavie
cores: An exascale core OS needs to combine low-cost séhgdul
with predictable process execution to facilitate load beitag. The
following open problems need to be addressed: How does sthed
ing in a massive multicore environment differ from tradita op-
erating system scheduling? How can concepts such as iptgrru
priority, swapping be implemented while ensuring presetxe-
cution? How can resource contention be reduced, both for NoC
messages and off-chip traffic (memory, 1/0)?

Guarantee scalability as the number of cores increases: 8U0S
has t o ensure that performance increases linearly with tine n
ber of cores as more cores are added (scale out). The fofjowin
open problems need to be addressed: What are the appropriate
metrics or measures of effectiveness to evaluate perfaratahre
some measures biased towards specific applications @afitime
image processing)? How can the shared memory limitatiogis th
plague some multicore systems be overcome? For example, doe
the potential of message passing among core elements coadest
sive numbers of cores? Can application performance scaeras
counts increase and NoCs become subject to contention? &low ¢
hardware routing be complemented by software re-routirggtter
utilize the NoC?

Provide an environment for power-awareness: The exasc8le O
needs to tackle the power consumption / leakage problengs-inh
ent to multicore systems. The following open problems nedukt
addressed: What is the interaction of scheduling with cotea:
tion? Is there any latency that needs to be accounted forthAre
tradeoffs between activating cores vs. attempting to meerthe
use of cores already activated? How many cores should lizedtil

at a time to obtain an optimal energy-delay trade-off?

Develop runtime/operating systems abstractions for msms with
massive numbers of cores: The envisioned exascale OS géesi
as a “natural” fit with multicore systems, to be synergistithwand
complement them. This is as opposed to the current state @frth
where operating systems are derived from legacies that mexer
initially designed from the ground up to accommodate higireles

of parallelism among tens or hundreds of processors or colres
following open problems need to be addressed: What traditio
operating system services are applicable to multicores (Bpes,
threads, mutexes, interrupts, signals, etc.)? How can libeai-
lored for multicore support, while maximizing the use of e
cores? How do language abstractions support such OS meoigni
for massive multi-cores?

Our vision is a system where featherweight layers of pdrsithe
are scalably coordinated in a distributed manner to providse to

file systems). We seek to support a massive number of cores onraw performance while ensuring predictability.

a single chip, which paves the path to scalable runtime#tipey

3. EXPERIMENTAL RESULTS

3.1 Microenchmarks

We have conducted experiments to assess the trade-offedmetw
message passing and shared memory of a 64-core NoC (TileRrd64)
[3], which has multiple mesh networks (on chip). In a bandivid
micro-benchmark, we measured the transfer time in cycledifo
ferent data sizes. We compared message passing over thayuser
namic network (UDN) with shared memory transfers over the co
herence interconnect. Figure 1 indicates that shared nyenmmirs
roughly twice the cost of message passing transfers (bdtiouti
hashing). UDN messages follow a one-sided push model (sende
initiated) while shared memory accesses are pull baseeiyesc
initiated) and require at least two messages for a singtesfiea

The differences between shared memory and message passing b
come even more significant as the distance (hop count) betwee
cores in the NoC increases and as NoC contention increese
results indicate that message passing has the potentialitioeo-
form shared memory transfers and that the former has superio
scaling characteristics than the latter.

8000
7000
6000
5000
4000
3000

Shared Merhor;? rem——
Message Passing me—u
1000

om.mi.I.I.iu‘.w. !

4 6 8 101214161820 22 24 26 28 30 32
Processors

Cycles

2000

Figurel: Increasein Shared Memory Contention/Jitter

The figure also indicates a significant increase in jitteriglity)

for shared memory access latencies as the number coreswnd th
contention increases. These results are further supploytéue in-
crease in memory latencies caused by contention to shamnedme

of Figure 2. In a shared-memory system design, both the tpera
ing system and the application increasingly suffer fromhdaten-
cies as the core count increasBsle to these findings, we promote
a system design that breaks with the shared memory abstnacti
While this is our primary philosophy, we would still allow ated
memory abstractions for smaller ensembles of cores wheorper
mance and predictability allow to do so (for up to 16 cores).

80000

0% m50% = 100%

70000

60000

50000

40000

Cycles

20000 +

10000

Number of Cores

Figure2: Shared Memory Latency for Contention Levels

50000 —==Acked

45000 =o=Interrupt
<@-Polled
40000 e

35000
30000
25000
20000
15000

/
10000

0 T T T |

4 8 16 32 64 128 256 512
Number of Words Transferred

Cycles

Figure 3: Message L atency for Different Protocols

3.2 NASIS

We have implemented a parallel bucket sort algorithm (éeffrom
the NAS IS benchmark) on the Tilera TilePro 64 over (a) shared
memory and (b) message passing utilizing the vendor’srupér
based approach. Figure 4 depicts the performance resulbsl{i
lions on cycles) over an increasing humber of cores (4-5Bis iB

a weak scaling experiment [5] where the number of keys pe¥ cor
is fixed at a certain size. This ensures that the computdtoork

per core remains the same as the number of cores coopena#ng i
parallel sort is increased. We measure the performancesfecqre
sizes of 2k, 4k 8k and 16k keys to ensure that all keys fit inéo th
local L2 cache after a warm-up phase. The expected resuicak w
scaling under perfect scalability would be a flat line.

1000
900

OMP 16384
——OMP 8192
~——OMP 4096
==0MP 2048
MPI 16384
——MPI 8192
——MPI 4096
—MPI 2048

o

4

800
700
600
500
400
300
200

Millions of Processor Cycles (700 Mhz)

100

[
8 12 16 20 24 28 32 36 40 44 48 52 56

Number of Processors

Figure 4: Performance of Bucket Sort for Different Problem
Sizes

We make the following observations: (1) Shared memory isflic
overheads up to 50 times higher than message passing, akpeci
for a small number of cores. This is due to the coherence gedpo
overhead and the latencies over the distributed L2, whiclses
frequent messages. (2) As the core count increases, odsrbéa
message passing increase quadratically. This shows thabtit
ing algorithm is communication bound. The quadratic groth
due to increasing contention over the 2D mesh interconngot.

a 3D mesh, the increase would be cubical.) (3) As the coretcoun
increases, overheads of shared memory vary erraticallyodNeC
contention. The variance for shared-memory results overoat
sizes is in the same order as the difference between 4 and&$ co
for message passing, albeit without any erratic variancéhfolat-
ter. By correlating these results with the vendor’s ackealghment-
based message passing to our polling-based approach €R3yur
we conjecture that communication performance can be inggrov
up to 16 times for the parallelized bucket sort. Furthermbyere-
ducing contention over the NoC, our approach can resultjersor
scaling, i.e., a reduction from a quadratic overhead to aritdgnic
one depending on the NoC overlay structure.

4. REFERENCES
(1]

(2]

3

[4

5

[6

[7

[8

_ =

]

—

—_—

—_

Single-chip cloud computer.
blogs.intel.com/research/2009/12/sccloudcomp.php.
Tera-scale research prototype: Connecting 80 simplesson

a single test chip.
ftp://download.intel.com/research/platform/terasfiara-
scaleresearchprototypebackgrounder.pdf.

Tilera processor family.
http://www.tilera.com/products/processors.php.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagamd, T
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adria
Schiipbach, and Akhilesh Singhania. The multikernel: a new
os architecture for scalable multicore system$ioceedings
of the ACM SIGOPS 22nd symposium on Operating systems
principles Symposium on Operating Systems Principles,
pages 29-44, 2009.

John L. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACN81(5):532-533, May 1988.
Andreas Moshovos, Gokhan Memik, Alok Choudhary, and
Babak Falsafi. Jetty: Filtering snoops for reduced energy
consumption in smp servers. linternational Symposium on
High Performance Computer Architectymages 85-96, 2001.
K. Sankaralingam, R. Nagarajan, P. Gratz, R. Desikan,

D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan,

S. Sethumadhavan, S. Sharif, P. Shivakumar, W. Yoder,

R. McDonald, S.W. Keckler, and D.C. Burger. The distributed
microarchitecture of the trips prototype processor. In
International Symposium on Microarchitectutdovember
2006.

David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewe

Bao, Bruce Edwards, Carl Ramey, Matthew Mattina,
Chyi-Chang Miao, John F. Brown Ill, and Anant Agarwal.
On-chip interconnection architecture of the tile processo
IEEE Micro, 27:15-31, 2007.

